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Detecting unstable periodic orbits in chaotic continuous-time dynamical systems
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We extend the recently developed method for detecting unstable periodic points of chaotic time-discrete
dynamical systems to find unstable periodic orbits in time-continuous systems, given by a set of ordinary
differential equations. This is achieved by the reduction of the continuous flow to a Ponaprehich is then
searched for periodic points. The algorithm has global convergence properties and nagui®riknowledge
of the system. It works well for both dissipative and Hamiltonian dynamical systems which is demonstrated by
exploring the Lorenz system and the hydrogen atom in a strong magnetic field. The advantages and general
features of the approach are discussed in detail.
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I. INTRODUCTION Henon map[20], and later to certain other discrete chaotic
dynamical system§14,21,23. Several other methods have
Chaotic dynamics is an intrinsic feature of many physicalbeen developed to detect UPOs. However, they require a
systems. In recent years the general importance of invariamhore or less accurate guess of, e.g., the initial conditions for
structures in phase space for the understanding of the conthe system under investigation. The Newton—Raphson algo-
plex chaotic dynamics has become evident. The latter is gaithm, e.g., is a super exponential converging method to find
neric in atoms and molecules but also for many other interfoots, i.e., the fixed points of a map. However its starting
acting and also dissipative systems. A key development oboint has to be placed in the immediate neighborhood of an
the last years to describe chaotic systems is periodic orbiéxisting root in order to converge and consequently find the
theory[1-6]. It provides an expansion of the relevant prop-UPO. This makes it extremely difficult to find UPOs with
erties of the system in terms of its unstable periodic orbitSarger periods or to detect them for higher dimensional sys-
(UPOg and can be applied to both classical dissipativetems. Moreover, not all roots can be found using the Newton
[4—6] and Hamiltonian quantum systerf&,3]. For Hamil-  method. Zoldi and Greenside proposed a damped Newton

tonian systems, one major focus is the semiclassical energyethod[18] that allows a less restrictive choice of the initial
level density. In the case of dissipative systems one is inters

; i i - guess. However, for aN dimensional system, each iteration
ested in properties of chaotic attractors like Lyapunov expo-Step of the damped Newton method requiG&\®) opera-
nents, entropies and fractal dimensions, both _for IOW"tions(calculation of the stability matrix and the solution of a
dimensional model systenjg,8] as well as for experimental . . )

. : . . . system of equations It is therefore strongly desirable to
time seried9—-12). Various cycle expansion techniques have . :
been invented. The series expansions in terms of periodiglave an approa}(?h that dges .not need extensive adaptpn of
orbits are usually ordered with respect to the length of th e initial condltlong, which n twrn means the_1t no prior
orbits [4,5,7,13,14 and converge nicely if the symbolic dy- nowledge_of specific properties of the system is necessary
namics is well understoddt,5,15. Additionally, periodic or- ~ nd/or available.
bits of chaotic dynamical systems have been shown to be of Recently, a method has been developed by two of the
great importance in order to control the corresponding sysauthors to detect periodic orbits of chaotic m#p8,24. It
tems(see Ref[16] and references thersin has global convergence properties and needs only very mar-
The reason why the periodic orbits of a dynamical systen@linal knowledge of the system under examination i.e., essen-
are not easily detectable is their instability: trajectoriestially only the phase space of the system. The central subject
neighboring an UPO are repelled from it. As periodic orbitsof the present investigation is the extension of this method
open a door to the understanding of the chaotic dynamicgrom maps to continuous-time dynamical systems. It is orga-
many efforts have been made to develop methods to detenized as follows: In order to be self-contained Sec. Il gives a
these orbits despite their instability from both time series oibrief outline of the method developed in Ref&3,24 to
from some given set of equations of motioi&13,15,17— detect periodic orbits in time-discrete systefimsthe follow-
19]. O. Biham and Wenzel introduced a method to computeng referred to as the SD methodec. Il is devoted to the
the periodic orbits of a special class of systems up to arbiextension of the SD method to time-continuous systems.
trary accuracy{19]. This approach was first applied to the Sections IV and V contain applications to two continuous—
time dynamical systems: the dissipative Lorenz system and
the conservative Hamiltonian system describing the hydro-

*Email address: detlef.pingel@tc.pci.uni-heidelberg.de gen atom in a strong magnetic field. Section VI provides a
"Email address: peter.schmelcher@tc.pci.uni-heidelberg.de summary of the essentials and gives an outlook on possible
*Email address: fdiakono@cc.uoa.gr future investigations.
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FIG. 1. (a) Vector field around a saddle poirih) stabilization is FIG. 2. (a) Vector field around a saddle point different from Fig.
achieved by inverting the sign of thecomponent of the flux vec-  1; (b) inverting the sign of the& component of the flux vectors does
tors. not yield stabilization.

Il. DETECTING PERIODIC ORBITS IN TIME -DISCRETE each row and column, i.e., they are orthogonal. In two di-

CHAOTIC SYSTEMS mensions, the complete set of matrices are as follows:
In Refs.[23-29 a set of special transformations is in- 10 ~-10 ~10
vented in order to transform a dynamical system such that C1=(01), C2=( 0 _1), Cs= 0 1),

the following properties hold. The positions of the UPOs in
phase space are the same for the original chaotic system and

the transformed dynamical systems but their stability prop- C4=((1)_01), (4)

erties have changed: unstable fixed points turned into dissi-

patively stable ones. A trajectory of the transformed system 01 0—1 0 -1

starting in the domain of attraction of a stabilized fixed point C5=( B 10), Ce= ( 10 ) C7:( 10 )

converges in it. The UPOs of a chaotic dynamical system can

therefore be obtained by iterating the transformed systems 01

using a(robus} set of initial conditions. CsZ( (5)
To substantiate the above ideas we start with a given time- 10

discrete dynamical system, i.e., a map and the transformed systems evolve according to

Xi+1=104) D 5. k=S =CFX)=CLfP(x)—x], k=1,...8.
Our goal is to find the UPOs of lengphof the mapf, i.e., the ©®)
fixed pointsx, of the p times iterated map® It can be shown that any given fixed point of a fully chaotic
%= ®)(x,) ) two-dimensional system is stable in exactly two of the eight
o o/

systemsS, [23—-25. Therefore, propagating @ufficieny set
of starting points with each of the eight systems and looking
for the stationary points to which the trajectories converge
F(x)=f P (x)—x. (3y  Will yield the complete set of fixed points &F). The differ-
ential equationg6) can be integrated using a standard nu-
merical integration routine. However, for reasons of simplic-
ity we prefer to go back to discrete time and discretize the
a(?quations of motiori6) via the Euler discretization

To this aim, let us define a flux vect&i(x),

Clearly the position of the fixed points of the mé&{) and

the stationary points of the flow= F(x) defined byF are the
same. The transformations of the SD method are of glob
geometrical character in the sense that they contain, e.g., an
exchange or a reverse of the sign of certain components oc-
curring in the above flux vectoF. In the course of these \ith a small time step.. This yields the following discrete
transformations the flux vectors of the original systemiransformed systems:

around a stationary point become focused towards this point.

Figure 1 provides an example of a stabilizing transformation S Xia1=X+FNCLFP (%) —x]. (8)

that consists of reversing the sign of tkecomponent of

F(x). The set of fixed points df(P’ cannot be expected to be The implementation of the equatia@®) is straightforward
stabilized by just one particular transformation. Figuf@),2 and no integration routine is needed. Numerically, it turns
for example, shows a fixed point different from the one de-out that the basin of attraction of a periodic point that is
picted in Fig. 1a) for which the transformation applied in stable in one of the SD-transformed systems is not restricted
Fig. 1 does not yield the desired stabilitpee Fig. 2b)].  to the linear neighborhood of the fixed point, as it is the case
Therefore, a complete set of transformations is necessary iof the Newton method. It has a global geometrical extension
order to render all UPOs stable. These transformations ar@nd covers a comparatively large area of the phase space of
linear with respect to the flux vectdi(x). The correspond- the system. Trajectories that start at a large distance from the
ing matrices have only one nonvanishing entr§ or —1 in  periodic point approach its linear neighborhood rapidly. This

X—(Xi 11— X)I\, @)
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is an essential advantage compared to the Newton methosglystems are designed such that a relevant part of the trajec-
The Newton algorithm needs both the initial point to be closetories converges to these fixed points. In principle, these
to the fixed point and needs the evaluation of the stabilityideas apply to time-continuous systems as well. If the length
matrix for each step. What is more, only rootsof a func-  of the UPOs to be found would be known exactly, one would
tion f with |[f"f/(f")2|<1 and be found with the Newton simply apply the SD method to detect them. However, in
method. These requirements are not necessary when applgentrast to time-discrete systems the period is now a continu-
ing the SD method. This makes the SD method a powerfubus quantity. Therefore a direct transfer and application of
tool to find UPOs in time-discrete maps. It generally sufficesthe method is not possible.

to propagate a set of initial points with a minimal set of Let the original continuou&haotio system be given by a
stabilizing SD transformations. For fully chaotic dynamical system of ordinary differential equations, i.e., by the flow
systems(i.e., there is no repeller with unstable directions

only) the minimal sets are proven to p25] X=G(X). (10)

{C1.C5.Cal or {C1,C7.Ce}. © " Next we introduce a hyperplane in phase space that defines a

The set of starting points are best taken from the attractor ifPoincaresurface of sectior(PSS. The latter can be con-
case of dissipative systenf§POs are dense in the chaotic Structed by recording successive intersections of the continu-
attractoy or uniformly distributed in phase space for area-0Us trajectories with the hyperplane in the same direction.
preserving maps. The trajectories of the transformed systemiis yields a Poincarenap gg(x) belonging to the flow
S,, starting from these initial points, converge in those peri-G()f)' _UPO.S of the time-continuous system corre_spond to
odic points that are stable iEK Havina propagated the periodic points of the Pomcammap, i.e., to fixed points of
minimpal set of SD-transformed 'S stemg g" ?hgt has to bthe correspondingly iterated Poincarap. The intersections
done is to omit the multiple occurr):ance 0;‘ the detected fixe fa trajectpry of the system Wit-h the PSS are easily obt_ained
oints. Apart from the global convergence properties, the S y integrating the flow and continuously asking forthe S|r_1gle
Fnethod r?as the advar?tage that it c%ntains or?ly a si'ngle 0 ondition fulfilled b.y the hyperplane followed by an iteration
rameter\ that determines the step size of the transforme rocedure to specify Ehese points. Applying the SD transfor-
: . - ations to the Poincammap the dynamics takes place in a
dynamical system and is closely related to the stability of the(N_ 1)-dimensional subspr))ace ofyth\d,xdimensiongl phase
g)(;ier(ljtsp?r:gi. ;;ne s;nggtegczathfh?;iﬁiﬁ)sgaé’;f\&fgzetzzed space. Therefore, the minimal set of stabilization transforma-
o . s tions for dimensiorN—1 is needed only.
stability is strictly monotonous in the case of the SD trans- - . . ; .
formati{)n wgile the other transformations show an at As already pointed out in the previous section, one major
least appr§>l<'imate orderiri@5.26, This fact allows a detec advantage of the SD method is clearly its global convergence
) : T et . -~ property. This feature is equally present when the method is
tion of UPOs being selective with respect to their stability. applied to detect UPOs in PSS of time-continuous systems.

23Th2e SD methc:d. hasd.been aIreadyl_sp%Ed SUCCZ%SSfu"Pﬁ all examples considered below, the extensions of the ba-
[23-29 to several time-discrete maps like map(20] sins of attraction are typically many orders of magnitude

and lkeda ma@ﬂ]' It p_roved to be very effeptive f(_)r studies larger than the corresponding linear neighborhoods. For
of the stability properties of UPOs of two-dimensional malosIonger orbits, these basins of attraction tend to take on a

[2.8]' Other applications include the detection of unStablefractallike and fiberlike appearance. Another advantage of
h|g_h—pe.r|od orbits use_d for co.n.trol of complgx systeis], the SD method is the fact that no knowledge about the con-
estc;mﬁtlon OT g_ene][att:ng partlttl)(lnnsd_of chgohc SYSLE{M’ tinuous dynamical system is needed. There exist a number of
and the analysis of the unstable dimension variabjlay]. methods to find UPOs of chaotic dynamical systems by de-

Recently, the convergence properties of an algorithm b3finin . ; :
. . g certain symbolic sequences for the dynamics of the
Davidchack and Lai32] that is based on the SD method hassystem or by taking advantage of certain symmetries of the

been studied33] in detail. Also in Ref.[34] a successful oo aions of motion. None of these considerations are nec-

attempt has been made to detect periodic orbits of higheéssary when dealing with the SD method. All one needs is a

dimensional systems using the SD method combined with flumerical routine to reliably integrate the equations of mo-

so-:alle(_j s_ubs?%ce ﬂxe_d—lpomtt |tera_t|onh ics h tion and a coarse-grained set of starting points.

‘mayority of dynamical systems in physics however are Starting with a trajectory in the basin of attraction of a
continuous in time, i.e., their time evolution is described by ., t-in UPO  the speed of the convergence of the SD-
differential equations. The extension of the SD method Yransformed system decreases with decreasing distance of the

time-continuous systems is the main point of this paper. W%orresponding starting point from the fixed point. In the lin-

want to demonstrate the general applicability of the SD : . : :
method to detect UPOs in time-continuous dissipative Oear neighborhood of the fixed point, the distauteof the

Hamiltoni h h + oh hth point of the trajectonyfx,} to the fixed point decreases
amiitonian systems with compact phase space. exponentially liked,,,/d,=1—AA, whereA is the most

unstable eigenvalue of the fixed point in the original system
and \ is the parameter of the SD algorithfusually \
<1/A). Therefore the propagation speed can slow down
UPOs of a given lengtp of a mapf are nothing but fixed considerably, particularly when a small value)ofs used. In
points of thep times iterated map®). The SD-transformed this case the algorithm may become increasingly inefficient

IIl. DETECTING PERIODIC ORBITS
IN TIME-CONTINUOUS SYSTEMS

026214-3



PINGEL, SCHMELCHER, AND DIAKONOS PHYSICAL REVIEW B4 026214

if a high resolution of the position of an UPO with a long and cannot be inverted. The second problem is the fact that
period is required. The linear neighborhood of the fixed pointhe solutionx’ is in general not in the PSS, as explained
is the regime where the well-established Newton method apabove. Both obstacles can be removed by adding a small
plies and converges superexponentially. In our investigationsectorG(x) 5T along the flonG(x) to Eq.(14) [see Eq(16)

of time-continuous systems we therefore combine the SDbelow]. This bends the eigenvalue dfaway from unity. At
method with a Newton method. It turned out to be mostthe same time, the vectok(—x) can be constrained to the
efficient to interrupt the iteration of the SD-transformed sys-PSS. For the systems studied, the PSS are hyperplanes in
tem and make a trial shot with the Newton algorithm whenphase space, i.e., we have

the step length of the SD algorithm is below a given value.

The Newton procedure then either does not converge at all, (x'=x)-a=0 (15

or it converges to a periodic point within a fdiypically not

more than tepiterations. In the first case, the propagation ofwith the normal vectoa. Equation(14) now becomes

the SD algorithm is continued at the point where it has been

stopped. In the second case, one has to check whether the 1-J G(x)|[x" =x —[X=0s(X)]
Newton algorithm has converged to the same fixed point as a 0 5T |~ 0

the SD algorithm did. The latter is recommended in order to

allow for a classification of the fixed points found. A fixed |nyersion of the matrix on the left-hand side of the equation

point that attracts a trajectory h?? certain geometrical feagpgye yields the positiox’, resulting fromx within one step
tures that are related to the specific transformed system thgf the Newton algorithm.

is propagatedsee[25] for detailg. This close correlation is As discussed above, we found it most economic to com-
lost when the SD and the Newton algorithm are allowed tGyine the numerical algorithms in a way that either the SD

converge to different points. Additionally, the assignment ofethod or the Newton procedure is applied. Nonetheless,
a basin of attraction becomes meaningless if a random elgacently a different hybrid approach has been suggested for
ment like an uncontrolled Newton process is made use of. giscrete time systems, i.e., mdi3g]. It combines the advan-

Let us now provide some comments on the implementegdages of both methodSD and Newtopin each stepof the
Newton algorithm(for more details see, e.d5]). The Jaco-  corresponding hybrid algorithm and is therefore very effi-
bian matrixJ along a trajectory obeys the equation of motion cjent for sufficiently low-dimensional systems. However for

each step the stability matrix has to be integrated and to be

)= aG(X)J(t) (12) inverted, which makes this hybrid approach less promising

12 for higher-dimensional systems. Furthermore, the strong cor-

) o N relation of the geometrical features of the fixed point that
with the initial condition becomes stable and the corresponding SD transformation
At=0)=1 (12) that achieves this is, in_ general, reduced._One cannot be sure

' that the UPO the algorithm converges to is actually stable in

the pure SD-transformed system.

There are three important elements of the SD method as
applied to time-continuous systems: The choice of the PSS,
the set of starting points, and, finally, the value of the param-
eter\ that determines the step size of the propagation. These
elements can be utilized as tools if one is especially inter-
ested in UPOs with certain features and will therefore be
addressed in the following in more detail.

G(x,X" ) ~ga(X)+I(X' —X), (13 Obviously, only orbits.that inters_ect with the PSS can be
detected. The freedom in the choice of the PSS has to be
wherelJ is obtained by integrating Eq11) between the two considered as an advantage or more precisely as a selective
successive intersections atand gg(x). G(x,x') describes tool for the detection of the UPOs. In general the appearance

the image ok’ after the timeT(x). GenerallyG(x,x’) is not of t_he UPOs can, to a crude extent, be controlled by_ the
on the surface, even though x’' and g(x) are. This is choice of both the PSS and the requested number of inter-

because the times required to propagatand x’, until the ~ Sections: Searching for long periods and a small number of

next intersection with the PSS, are different. To find a fixedintersections will yield orbits that are predominantly local-
point X,=ge(X,) consider Eq.(13) as an equality and set 1zed far from the chosen PSS, whereas the quest for rela-

G(x,x')=x". Then the following linearized equation has to tively small periods with a large number of intersections re-

) . (16)

The trajectoryx(t) and the Jacobiad(t) can be integrated
simultaneously using the same integration rouficensider-
ing the entries ofJ(t) as additional coordinates of(t)].
Now we propagate an initial condition on the PSS to a
successive intersectiogg(x), which takes the timerl(x).
Linearizing around the flow yields for a point’ in the
neighborhood ok:

be solved forx': sults in orbits that are localized close to the RS&: Sec. Y.
The distribution of the periods of the UPOs to be found can,
(1= (X' =x)=~[x=gs(X)]. (14)  to some extent, be controlled by the paramatevhose im-

portance will be discussed next.
To achieve this, two problems have to be addressed. The first The parametei [see Eq.(7)] has the meaning of an
one concerns the fact thdt possesses a unit eigenvector elementary time step for the SD-transformed system. On the
along the flowG(x). Therefore the matrid—J is singular  other hand, it is also related to the stability of the UPOs that
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should be detected. Let us explain why. The stability matrix z=xy— Bz. (21)
of the transformed continuous systems in E).reads

Mg (X) = Cy(M gp(X) — 1) (17) In this model, the coordinates y, andz are related to the
S kWl g(p) ) . . . .

circulatory fluid flow velocity, the temperature gradient and
the p times iterated Poincanmap g(®. Let Mg (x) have ei- ered the following values of the parameters:

genvaluesA;. Fixed points in these systems are stable
Re(A;)<0. The discretised version of E€L7) belonging to 0=16.0, p=4.0, ¢=45.92. (22)
Eq. (8) possesses the stability matrix
Although the Lorenz system is originally three dimensional,
M3, (X)= 1+ AC(Myp)(X) — 1) (18 rapid phase space contraction leads to an essentially two-
dimensional attractor. Taking the gradient of the phase space
with eigenvalues ¥ A A; (the position of the fixed points of flow, one can see that the exponential contraction rate is (1
the continuous and the discrete system are the pafitav- 1 54 g) j.e.,V(t)=V(0)e Ao *A[36]. The dynamics is
ever, in order to be stable in the discrete system, the eigeRestricted to two nearly flat rotating plates. The centers of the
values of the stability matri1g (x) must have the modulus rotating motion are located at the stationary points
|1+\A;|<1. For highly iterated mapg'™, nlarge, we have [+B(p—1),=\B(e—1),0—1], and a third stationary
the typical situationA;<—1 and it is obvious that there pointis at (0,0,0). For use in geophysical studies the station-
exists an upper limit fok such that the fixed point is still ary points of a model system are of prominent importance.
stable in the transformed systdsee Eq(8)]. Therefore the Further significant insight can be gained by analyzing the
parametern determines the set of fixed points that can beUPOs of this system, which makes it an ideal testing ground
found by the discretized algorithit8). For example, only for our approach. All of these orbits are unstable. Many fea-
being interested in UPOs that are weakly unstdblg., for  tures of the Lorenz system, including UPOs and their bifur-
utilization in a stability-ordered cycle expansjanrelatively  cations, are discussed by Sparrd@7]. Several methods
large value of\ will do a good job. As a side effect the have been suggested so far to detect UPOs in this system
propagation time decreasébe step size is relatively large (see[36] and references therginThe Newton method works
and the domains of attraction have large extensions. Théne in principle, but requires a good guess of the initial
smaller the value oh, the larger the set of detected fixed conditions.
points will be. We now demonstrate that the SD method discussed in the
The performance of the SD-method depends also on thprevious section works extremely well for the detection of
set of starting points. One possibility is to sample the set othe UPOs in the Lorenz system. The PSS is given by
initial points from a chaotic trajectory. This will be the strat- {(x,y,z|z= @ —1}. This (hypepplane contains the two non-
egy for dissipative systemsee Sec. IYor attractors in gen- trivial stationary points. Since each UPO oscillates around
eral (for a different approach to the selection of initial points one and/or both of these stationary points, they have to in-
see Ref[32]). For chaotic ergodic Hamiltonian systems it is tersect with the PSS and yield therefore fixed points of the
natural to choose a uniform distribution of initial points on corresponding Poincammap. Propagating the set of initial
the PSS. Due to the global convergence character of the Spoints with the various SD-transformed systems, trajectories
method the set of starting points plays only a minor roleoften converge to the two stationary points contained in the
compared to, e.g., the Newton method. PSS. This is an undesired effect and we avoided a loss of
In the following we present two studies of continuous efficiency due to it by stopping the propagation of the trajec-
time dynamical systems: The three-dimensional dissipativéory as soon as it is close to either of the two stationary
Lorenz system and the Hamiltonian system consisting of th@oints (it might happen that this way certain periodic points
hydrogen atom in a strong homogeneous magnetic fieldpf the Poincaranap are excluded from detection, but since
which possesses two relevant degrees of freedom. For botin UPO generically possesses also points at larger distances
systems, the PSS is two-dimensional. Therefore, a minimgtom the stationary points, it is extremely unlikely that it is
set of only three SD-transformations is sufficient to detect allmissed because of this procedui®ince the chaotic attractor
fixed points of the Poincammap, i.e., all UPOs of the origi- of the Lorenz system is nearly two dimensional the set of

nal continuous-time system. intersections with the PSS is almost linear. It is therefore not
favorable to sample initial points randomly from the Poin-
IV. THE LORENZ SYSTEM care hyperplane(the SD algorithm would work well with

. . ] these initial points, too, but the paths of convergence would
The Lorenz model[35] provides a three-dimensional pe rather lony It is instead recommendable to sample points
model of the atmospheric convection. The correspondingrom a chaotic trajectory after a sufficient transient time has

equations of motion are passed. It turned out to be efficient to take not a complete
: section of the trajectory but short random segments. The rea-
X=0y—0X, (19 son for this is the intermittent behavior of the trajectories that
results in the same fixed points obtained for many successive
y=—Xz+pX—Y, (20 starting points from a trajectory.
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T pure SD algorithm would yield. In the latter case, the fixed
6 | ¥ g ] point found by the Newton method is discarded, since the
g correlation of the detected fixed points and the corresponding
. SD transformations is strongly desired. The propagating
4l - ¥ ] scheme then switches back to the SD algorithm. Provided the
% parameten is small enough, it typically takes less than 50
* steps of the SD algorithm and less than 10 steps for the
+ Newton algorithm to determine the position of the UPOs
1 within an accuracy ofg®(x) —x|<10" 4
+ In Table | the numerical results for the Lorenz system are
given. It provides the number of prime UPOs and their mean
0 5 1'0 15 period, sorted with respect to the number of intersections
number of intersections with the PSS. Referenc86] gives the number of prime
orbits for p<12 that coincide with our data in Table I. The
FIG. 3. The Lorenz system: Distribution of the length of the mean length of the UPOs grows approximately linear with
periodic orbits versus the number of their intersections with thethe number of intersections of the orbit. This reflects the
PSS. circular shaped dynamics of the Lorenz system: Trajectories,
and therefore also UPOs, rotate around the nontrivial station-
The N parameter has to be adjusted each time a differerary points with nearly constant frequency. Figure 3 shows the
number of intersections of the UPOs is required. This can balmost linear dependence as well as the small variance of the
achieved by choosing the stabilization mat@ix=1 and ad- length of the UPOs with the number of intersections. The last
justing X such that all or nearly all initial points converge two rows of Table | give some numerical properties of the
(the stabilized system corresponding@g is likely to con-  SD algorithm: the size of the parameter and the number of
verge from any point in the phase spakeyeing sufficiently  initial points needed to detect all UPOs. It is remarkable that
small). For the Lorenz system the relation of the length ofthis number roughly coincides with the number of detected
the UPOs to the number of their intersections with the PSS iperiodic points. However, it has to be kept in mind that not
approximately one dimensional which is illustrated in Fig. 3.all initial points converge and this set therefore, has to be
The instability of the orbits generally increases with theirslightly larger than the numbebs; given in Table I. The SD
length. Therefore, the value afhas to be decreased if UPOs method is capable of locating UPOs with a remarkable large
with a larger number of intersections should be detectedaumber of intersections. Figure 4 displays an example of an
This relation looks very different for the hydrogen atom in aUPO with 30 intersectiongin the same directionwith the
magnetic field(see next section PSS. It clearly exhibits the elements all orbits of the Lorenz
As explained in the previous section, the numerical effi-System are composed of: The rotating motion in the two
ciency can be dramatically improved by combining the SDplanes with a varying number of turnovers between them.
method with a Newton algorithm. The time to switch the Remarkably, all UPOs can be found by propagating only one
propagation from one method to the other is crucial for theof the SD-transformed systems, i_é4, with the matrixC,.
efficiency of the algorithm. We found the following proce- Figure 5 shows the set of intersections of the UPOs given in
dure to be most effective: The trajectory is propagated withTable I. It demonstrates clearly the nearly two-dimensional
the SD algorithm, starting from some initial point, until a extension of the chaotic attractor. It is possible that the low
step sizdgtP(x) —x| <€ is reachedtypically e=0.1). Then  dimension of the attractor is related to the fact that only one

it is checked whether the above defined step size decreasgp) transformed syste, is sufficient to find all UPOs.
further while applying the SD algorithm. If nok(is still too

large to provide convergencthe SD algorithm is continued.

Elsewise, i.e., if the step size is decreasing constantly the
Newton algorithm is switched on. In case it converges it does
so within a few & 10) steps and converges close to the point  The hydrogen atom in a strong homogeneous magnetic
where the SD algorithm was terminated. If the convergencéield is also known in the literature as the diamagnetic Kepler
pattern differs from the above, the fixed point of the Newtonproblem. With increasing degree of excitation i.e., increasing
algorithm is likely to be different from the fixed point the energy and/or increasing field strength its classical dynamics

V. THE HYDROGEN ATOM IN A STRONG MAGNETIC
FIELD

TABLE I. Lorenz system. Properties of periodic orbits with 2 up to 14 intersections with the PSS, and parameters of the numerical
detection: the parametar and the required number of converged initial poiNts sampled from the attractor.

Number of intersections 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of prime orbits 1 2 3 6 9 18 30 56 99 186 335 630 1160
Mean period 0.941 1.394 1.843 2.305 2.756 3.219 3.676 4.136 4.595 5.054 5.514 5974 6.433
A 0.1 0.1 0.1 0.05 0.01 0.01 0.001 0.001 0.001 0.001 0.0001 0.0001 0.0001
N; 1 3 11 17 144 40 192 687 1094 2523 3773 10498 11472
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z The Hamiltonian of the hydrogen atom in a strong mag-
netic field assuming an infinite nuclear mass reads in atomic
units

2
p 1 1 1 5 2 o
=——i=+z9yl,+t= +y9).
40 It depends on the relative coordinatesind momentg of
the electron with respect to the nucleds.represents the
20

component of the angular momentum parallel to the mag-
netic field y. Rescaling the coordinatés.g., Ref.[38]) ac-
cording to

=% and p=y %% (24)

the dynamics, i.e., the Hamiltonian equations of motion de-
pend now only on the scaled energy

e=y~ 23 (25

FIG. 4. The Lorenz system: An example of a long periodic orbit

with 30 intersections with the PSS. and not onkE and y separately. The singularity at=0 is a

drawback of the above Hamiltonian. It can be removed e.g.,

, ) by the introduction of semiparabolic coordinaiesg., Ref.
is well known to become almost completely chaotic. Un-[38]):

stable periodic orbits have been extensively ucmk Refs.

[3_8—4]] and references_, there)i_mo s_emiclas_sically quan_tize 2= 7|2, w2=[F|+%, (26)
this system and to obtain detailed information on a variety of

properties(level density, scarring of wave functions @ic. where the momenta

Therefore several methods have already been developed to

detect UPOs in this system by searching, e.g., along symme- dv du

try lines in configuration spadel1]. Some of these methods =47 Pu=47 (27)
are based on assigning a certain symbolic code to the indi-

vidual UPOs and most of them are specially designed for thare defined with respect to the scaled timgiven by
diamagnetic Kepler problem. As already mentioned above ~

the SD approach needs no such prior knowledge and will be dt=2[r|dr=(v?+ u?)dr. (28
demonstrated to work very well also for this Hamiltonian

system: No discussion of symmetry is needed and no symtfhe equations of motion generated by the Hamiltor(i23)
bolic code has to be developed. All what is necessary is #r a fixed value of the scaled energy are equivalent to the
numerical routine to integrate the equations of motions, th&guations of motion generated by the Hamiltonian
proper definition of the PSS and a chaotic trajectory to

sample the initial points from. We emphasize that the dia- h B p2 12 pi 12 2, 2
magnetic Kepler problem is just one although prominent ex-  (#:?:Pu:P) = 5 §+ 2 Tou7 e(vitus)
ample of a physical system that can be analyzed with help of
the SD algorithm. 1, ., 5 L
+§V,LL(V +uc)=2 (29
20
at the fixed pseudoenergy 2. For negative scaled enetgies
y _ <0, i.e., compact phase space, the Hamiltor{2® repre-
10 ’ sents a sextic oscillator: Two harmonic oscillators with fre-
quencyw=+/—2¢, which are coupled by the term? u?(v?
0 + u?) due to the diamagnetic interaction. The trajectories
generated by the Hamiltoniad and h are not related by a
canonical transformation, but there is a one-to-one corre-
-10 ’ . spondence. In the following we confine ourselves to vanish-
ing angular momentunh,=0 and use a scaled energy
_20 ; —0.1 for which the classical atom is almost completely cha-
-20 -10 0 10 X 20 otic. Although the SD method works also in systems with

considerable fractions of the phase space being integrable,
FIG. 5. The Lorenz system: The location of periodic orbits with we concentrate on the situation of almost fully chaotic phase
2 up to 14 intersections in the PSS. space.
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The equations of motion in the semi parabolic coordinates 100 v v
are derived in a straightforward way from the Hamiltonian T S
(29) + 20 |+ +J
80} +3]
. ¢h T ¥
w=——=p,, (30) [ '
p, * 60 } 10 =$$
dh ’ -+$
" [?pv N pV, (31) 40 i $ 00 nurénber éfmteérsecu%ms R
. dh 1, 1., -
pu“ﬁ—e VLAY A (32) 20 } § . " : + 0
"
. dh 1, 1., 0 + . .
P,=— o =ev—gvptmSviut (33 0 2 4 6 8 10

number of intersections

These equations of motion are integrated using a Taylor— FG. 6. The hydrogen atom in magnetic field: Distribution of the
Integration schem@42] (due to energy conservation the dy- |ength of the periodic orbits versus the number of their intersections
namics takes place on a three-dimensional energy)sfiéls  in the PSS. The inset shows the low-period part of the distribution.
algorithm is best suited to integrate Hamiltonian of polyno-

mial structure. The temporal derivatives of the phase spacpoincaremap. Figure 6 shows the distribution of the length
coordinates are expanded in a.Taonr series up to a givesf the UPOs. A particular example of such an orbit is illus-
orderN. Hereby we make extensive use of the correspondingrated in Fig. 7. To find UPOs with just one or two intersec-
recursion relations. The stability matrix can be expanded anglons we took a large number of initial conditioftypically
integrated the same wdfor details see Ref42]). This Tay-  several thousandand found several long orbits as the one
lor integrator is an extremely powerful tool to reliably inte- shown in Fig. 7. The majority of the orbits, of course, are
grate the equations of motidan optimal order to be used is significantly shorter and have a simpler appearance. The in-

typically N=18). crease of the length of their periods with the number of in-
The PSS is given by the hyperplane tersections is nearly linegsee Fig. 6, insgtsimilar to the

Lorenz system. If the grid of initial points becomes larger

{v.p,,n=0} (34 and the parametex becomes smaller we can detect increas-

ingly more and longer UPOs in a given area of the PSS. We
used rather large grids of initial points for the detection of
gPOs up to four intersections. For more intersection points a
UPOs as the choicku,p,, ,»=0}. The position of a paint in smal_ler grid of initial points has bee_n appll_ed._As a result we
: e . . obtain large sets of UPOs possessing a significantly varying
the PSS is therefore given by the pair of coordinatep(). N
. X . . ! V. length, as visible in Fig. 6.
Using a bisection method the latter is determined within an ina th hod | h
accuracy of |u|<10 5 The intersection of the three- Usmgt e SD method, one can control to some extgntt e
dimensional ener su'rface with the PSS defines a th)t_opolog|cal features of the UPOs to be detected: Looking for
. . gy s . . : UPOs starting with a large grid of initial points and a rather
dimensional area in this surface in which the dynamics of the

. ) Small value of the parameter one can detect long UPOs
system takes place. Equati(eg) with pﬂ>_0 ShOV_VS that the that linger for quite a time at a certain distance above and
area in the PSS allowed for the dynamics is given by

below the PS$Fig. 8@)]. The numerical effort herefore is

Due to the exchange symmetwy— v of the Hamiltonian Eq.
(29) and the equations of motid80)—(33) this choice of the
PSS gives the same numerical values of the position of th

p2—2ev?’<4 (35

i.e., in coordinates{—2ev,p,) this area is given by a circle
of radius 2. The Hamiltonian Eq29) with 1,=0 and u
=0 defines the initial valuep,=2 2—eu2—%p,2, corre- T
sponding to an initial point,p,) in the surface of section. Pu/v

It is sufficient to consider just one sign-(in this casg for

the square root on the right-hand side since there are alway

symmetric pairs of orbits related by reflection at the PSS.

The role of the number of intersections of an UPO is —
different when compared to the Lorenz system. Now we en- 4
counter also long UPOs possessing only a few intersection:
of the PSS as well as relatively short ones that intersect the
PSS quite often. Therefore it is possible to find extremely FIG. 7. Hydrogen atom in magnetic field: Example of a long
long orbits as fixed points of the only a few times iteratedperiodic orbit with just four intersections with the PSS.
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L -
(-2¢) v

FIG. 8. Hydrogen atom in magnetic field: Periodic orbit with, a  FIG. 9. Hydrogen atom in magnetic field: Location of periodic
a small number of intersections, located mainly above and belowsrbits with one up to nine intersections in the PSS.
the PSS, pba large number of intersections, located mainly in the
PSS. intersections. Since this number turned out to be larger than

the necessary saturatids;, we reduced it to 1000 initial

minor, since for each step of the SD algorithm the Poincargoints for UPOs with more than four intersections. However,
map has to be iterated just a few times. On the other sideggain one has to keep in mind that not all initial points finally
looking for fixed points of the higher iterated Poincamap, converge in an UPO. They might diverge or might not reach
one might get, even for a relatively large UPO's that have the desired accuracy within an appropriate time interval. In
a crownlike appearance like in Fig(t8. The position of the contrast to the Lorenz attractor, the propagation of each of
PSS and the demanded number of intersections together withe SD-transformed systems within the complete minimal set
the parametex and the set of starting pointsee belowcan {S;,S;,S,} yielded distinct orbits.

therefore be used as a tool to determine, at least in a rough Figure 9 finally shows the intersection points of all UPOs
way, the topology of the UPOs to be found. given in Table Il. To generate this figure the intersection

Determining the set of initial points is relatively straight- points have been mirror imaged by tie-2ev andp,, axes.
forward for this system. The dynamics is supposed to b&he dynamics is supposed to be ergodic, i.e., a chaotic tra-
nearly ergodic, therefore a uniform random distribution ofjectory fills the intersection of the energy surface and the
initial points in the surface of section is a good choice. ThePSS with uniform density. Nevertheless, the pattern of the
Hamiltonian Eq(29) is symmetric with respect to the reflec- intersections of the UPOs suggest some reminiscent structure
tions v——v and p,— —p, . Therefore, each UPO with a in phase space. Especially for larger absolute values of
given length appears four times in the total phase space, anf~2¢» a shell-like structure emerges. Given a value of
the intersections with the PSS are located at coordinates r?d__zfy|, certain values oflp,| seem to be favored by
lated by the above symmetry operations. To avoid the congypQs. with|/— 2ev| approaching its maximal value of 2,
vergence to UPOs that are trivially related by symmetry thehese favored values continuously decrease to zero.
initial points were distributed in a quarter segment of a circle
with the coordinates—2ev,p,) and the radius 2.

Table Il summarizes the result of our investigation. In
contrast to the Lorenz system the minimal number of inter- We demonstrated that the SD method for chaotic time-
sections is 1, corresponding to UPOs of the type given irdiscrete dynamical systems is easy to implement and at the
Fig. 8@). The number of UPOs with a given number of in- same time a very efficient algorithm for the detectior(wi-
tersections and their mean length of period do not vary in atablg periodic orbits of continuous-time differential equa-
regular way as for the Lorenz system. The last row in Tabldions. The basic idea is the reduction of the continuous flow
Il shows the minimal numbe; of initial points that had to  of the system to a discrete Poincanap. The Poincarmap
converge in order to find the listed number of UPOs. Weis then scanned for periodic points, i.e., fixed points of the
used a set of 4000 initial points to detect UPOs up to fouiiterated map. This way, the transformations that stabilize the

VI. SUMMARY AND OUTLOOK

TABLE II. Hydrogen atom in magnetic field. Properties of periodic orbits with one up to nine intersections with the PSS, and parameters
of the numerical detection: The paramekeand the required number of converged initial poiNts sampled from the attractor.

Number of intersections 1 2 3 4 5 6 7 8 9

Number of prime orbits 29 14 16 13 12 19 19 11 11
Mean period 10.814 15.248 6.055 14.333 9.955 12.320 14.519 17.083 18.554
N 0.005 0.005 0.005 0.005 0.001 0.001 0.001 0.001 0.0005
N; 482 1348 462 48 173 209 650 432 126
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original chaotic system operate in the hyperplane of the se@xpected that the convergence is even faster in higher-
tion. This approach to time-continuous systems possesses diimensional systems. Compared to methods that require the
the advantageous features of the SD method: A large exterstarting point to be close to the periodic orblike the New-

sion of the basins of attractiofwhich is of even greater ton algorithn) the SD algorithm is expected to perform sig-
importance in higher-dimensional time-continuous sysjems nificantly better and offers a variety of possibilities to selec-
a nearly monotonous relation of the discretization parametetively investigate dynamical systems without prior

N\ with the stability of the detected periodic orbits, and aknowledge on them.

correlation of the geometrical features of the detected peri-
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