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Detecting unstable periodic orbits in chaotic continuous-time dynamical systems
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We extend the recently developed method for detecting unstable periodic points of chaotic time-discrete
dynamical systems to find unstable periodic orbits in time-continuous systems, given by a set of ordinary
differential equations. This is achieved by the reduction of the continuous flow to a Poincare´ map which is then
searched for periodic points. The algorithm has global convergence properties and needs noa priori knowledge
of the system. It works well for both dissipative and Hamiltonian dynamical systems which is demonstrated by
exploring the Lorenz system and the hydrogen atom in a strong magnetic field. The advantages and general
features of the approach are discussed in detail.
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I. INTRODUCTION

Chaotic dynamics is an intrinsic feature of many physi
systems. In recent years the general importance of invar
structures in phase space for the understanding of the c
plex chaotic dynamics has become evident. The latter is
neric in atoms and molecules but also for many other in
acting and also dissipative systems. A key developmen
the last years to describe chaotic systems is periodic o
theory @1–6#. It provides an expansion of the relevant pro
erties of the system in terms of its unstable periodic orb
~UPOs! and can be applied to both classical dissipat
@4–6# and Hamiltonian quantum systems@2,3#. For Hamil-
tonian systems, one major focus is the semiclassical en
level density. In the case of dissipative systems one is in
ested in properties of chaotic attractors like Lyapunov ex
nents, entropies and fractal dimensions, both for lo
dimensional model systems@7,8# as well as for experimenta
time series@9–12#. Various cycle expansion techniques ha
been invented. The series expansions in terms of peri
orbits are usually ordered with respect to the length of
orbits @4,5,7,13,14# and converge nicely if the symbolic dy
namics is well understood@4,5,15#. Additionally, periodic or-
bits of chaotic dynamical systems have been shown to b
great importance in order to control the corresponding s
tems~see Ref.@16# and references therein!.

The reason why the periodic orbits of a dynamical syst
are not easily detectable is their instability: trajector
neighboring an UPO are repelled from it. As periodic orb
open a door to the understanding of the chaotic dynam
many efforts have been made to develop methods to de
these orbits despite their instability from both time series
from some given set of equations of motions@8,13,15,17–
19#. O. Biham and Wenzel introduced a method to comp
the periodic orbits of a special class of systems up to a
trary accuracy@19#. This approach was first applied to th
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Hénon map@20#, and later to certain other discrete chao
dynamical systems@14,21,22#. Several other methods hav
been developed to detect UPOs. However, they requir
more or less accurate guess of, e.g., the initial conditions
the system under investigation. The Newton–Raphson a
rithm, e.g., is a super exponential converging method to fi
roots, i.e., the fixed points of a map. However its starti
point has to be placed in the immediate neighborhood of
existing root in order to converge and consequently find
UPO. This makes it extremely difficult to find UPOs wit
larger periods or to detect them for higher dimensional s
tems. Moreover, not all roots can be found using the New
method. Zoldi and Greenside proposed a damped New
method@18# that allows a less restrictive choice of the initi
guess. However, for anN dimensional system, each iteratio
step of the damped Newton method requiresO(N3) opera-
tions ~calculation of the stability matrix and the solution of
system of equations!. It is therefore strongly desirable t
have an approach that does not need extensive adaptio
the initial conditions, which in turn means that no pri
knowledge of specific properties of the system is necess
and/or available.

Recently, a method has been developed by two of
authors to detect periodic orbits of chaotic maps@23,24#. It
has global convergence properties and needs only very m
ginal knowledge of the system under examination i.e., ess
tially only the phase space of the system. The central sub
of the present investigation is the extension of this meth
from maps to continuous-time dynamical systems. It is or
nized as follows: In order to be self-contained Sec. II give
brief outline of the method developed in Refs.@23,24# to
detect periodic orbits in time-discrete systems~in the follow-
ing referred to as the SD method!. Sec. III is devoted to the
extension of the SD method to time-continuous syste
Sections IV and V contain applications to two continuou
time dynamical systems: the dissipative Lorenz system
the conservative Hamiltonian system describing the hyd
gen atom in a strong magnetic field. Section VI provides
summary of the essentials and gives an outlook on poss
future investigations.
©2001 The American Physical Society14-1
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II. DETECTING PERIODIC ORBITS IN TIME –DISCRETE
CHAOTIC SYSTEMS

In Refs. @23–25# a set of special transformations is in
vented in order to transform a dynamical system such
the following properties hold. The positions of the UPOs
phase space are the same for the original chaotic system
the transformed dynamical systems but their stability pr
erties have changed: unstable fixed points turned into d
patively stable ones. A trajectory of the transformed syst
starting in the domain of attraction of a stabilized fixed po
converges in it. The UPOs of a chaotic dynamical system
therefore be obtained by iterating the transformed syst
using a~robust! set of initial conditions.

To substantiate the above ideas we start with a given ti
discrete dynamical system, i.e., a mapf:

xi 115f~xi ! ~1!

Our goal is to find the UPOs of lengthp of the mapf, i.e., the
fixed pointsxo of the p times iterated mapf (p)

xo5f (p)~xo!. ~2!

To this aim, let us define a flux vectorF(x),

F~x!5f (p)~x!2x. ~3!

Clearly the position of the fixed points of the mapf (p) and
the stationary points of the flowẋ5F(x) defined byF are the
same. The transformations of the SD method are of glo
geometrical character in the sense that they contain, e.g
exchange or a reverse of the sign of certain components
curring in the above flux vectorF. In the course of these
transformations the flux vectors of the original syste
around a stationary point become focused towards this po
Figure 1 provides an example of a stabilizing transformat
that consists of reversing the sign of thex component of
F(x). The set of fixed points off (p) cannot be expected to b
stabilized by just one particular transformation. Figure 2~a!,
for example, shows a fixed point different from the one d
picted in Fig. 1~a! for which the transformation applied i
Fig. 1 does not yield the desired stability@see Fig. 2~b!#.
Therefore, a complete set of transformations is necessa
order to render all UPOs stable. These transformations
linear with respect to the flux vectorF(x). The correspond-
ing matrices have only one nonvanishing entry11 or 21 in

FIG. 1. ~a! Vector field around a saddle point;~b! stabilization is
achieved by inverting the sign of thex component of the flux vec-
tors.
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each row and column, i.e., they are orthogonal. In two
mensions, the complete set of matrices are as follows:

C15S 1
0

0
1D , C25S 21

0
0

21D , C35S 21
0

0
1D ,

C45S 1
0

0
21D , ~4!

C55S 0
21

1
0D , C65S 0

1
21
0 D , C75S 0

21
21
0 D ,

C85S 0
1

1
0D ~5!

and the transformed systems evolve according to

Sk : ẋ5Sk~x!5CkF~x!5Ck@ f(p)~x!2x#, k51, . . ., 8.
~6!

It can be shown that any given fixed point of a fully chao
two-dimensional system is stable in exactly two of the eig
systemsSk @23–25#. Therefore, propagating a~sufficient! set
of starting points with each of the eight systems and look
for the stationary points to which the trajectories conve
will yield the complete set of fixed points off(p). The differ-
ential equations~6! can be integrated using a standard n
merical integration routine. However, for reasons of simpl
ity we prefer to go back to discrete time and discretize
equations of motion~6! via the Euler discretization

ẋ→~xi 112xi !/l, ~7!

with a small time stepl. This yields the following discrete
transformed systems:

S̃k : xi 115xi1lCk@ f(p)~xi !2xi #. ~8!

The implementation of the equation~8! is straightforward
and no integration routine is needed. Numerically, it tur
out that the basin of attraction of a periodic point that
stable in one of the SD-transformed systems is not restric
to the linear neighborhood of the fixed point, as it is the ca
of the Newton method. It has a global geometrical extens
and covers a comparatively large area of the phase spac
the system. Trajectories that start at a large distance from
periodic point approach its linear neighborhood rapidly. T

FIG. 2. ~a! Vector field around a saddle point different from Fi
1; ~b! inverting the sign of thex component of the flux vectors doe
not yield stabilization.
4-2



ho
s

ilit

pp
rf
e
of
a
ns

r
ic
a
em
ri

b
e
S
p
e
th
d

ns
a
-
y.
fu

s
p
bl

b
as

h
th

re
by
t

W
SD

o

jec-
ese
gth
ld
in

inu-
of

es a
-
inu-
on.

to

ned
le
n

for-
a

a-

jor
nce
d is
ms.
ba-
de
For
n a

of
on-
r of

de-
the
the
ec-

is a
o-

a
D-
f the
n-

s

em

wn

ent
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is an essential advantage compared to the Newton met
The Newton algorithm needs both the initial point to be clo
to the fixed point and needs the evaluation of the stab
matrix for each step. What is more, only rootsxo of a func-
tion f with u f 9 f /( f 8)2u,1 and be found with the Newton
method. These requirements are not necessary when a
ing the SD method. This makes the SD method a powe
tool to find UPOs in time-discrete maps. It generally suffic
to propagate a set of initial points with a minimal set
stabilizing SD transformations. For fully chaotic dynamic
systems~i.e., there is no repeller with unstable directio
only! the minimal sets are proven to be@25#

$C1 ,C3 ,C4% or $C1 ,C7 ,C8%. ~9!

The set of starting points are best taken from the attracto
case of dissipative systems~UPOs are dense in the chaot
attractor! or uniformly distributed in phase space for are
preserving maps. The trajectories of the transformed syst
S̃k , starting from these initial points, converge in those pe
odic points that are stable inS̃k . Having propagated the
minimal set of SD-transformed systems, all that has to
done is to omit the multiple occurrence of the detected fix
points. Apart from the global convergence properties, the
method has the advantage that it contains only a single
rameterl that determines the step size of the transform
dynamical system and is closely related to the stability of
fixed point. The smallerl is, the more unstable are the fixe
points that can be detected. This relation betweenl and the
stability is strictly monotonous in the case of the SD tra
formation S1, while the other transformations show an
least approximate ordering@25,26#. This fact allows a detec
tion of UPOs being selective with respect to their stabilit

The SD method has been already applied success
@23–25# to several time-discrete maps like He´non map@20#
and Ikeda map@27#. It proved to be very effective for studie
of the stability properties of UPOs of two-dimensional ma
@28#. Other applications include the detection of unsta
high-period orbits used for control of complex systems@29#,
estimation of generating partitions of chaotic systems@30#,
and the analysis of the unstable dimension variability@31#.
Recently, the convergence properties of an algorithm
Davidchack and Lai@32# that is based on the SD method h
been studied@33# in detail. Also in Ref.@34# a successful
attempt has been made to detect periodic orbits of hig
dimensional systems using the SD method combined wi
so-called subspace fixed–point iteration.

A majority of dynamical systems in physics however a
continuous in time, i.e., their time evolution is described
differential equations. The extension of the SD method
time-continuous systems is the main point of this paper.
want to demonstrate the general applicability of the
method to detect UPOs in time-continuous dissipative
Hamiltonian systems with compact phase space.

III. DETECTING PERIODIC ORBITS
IN TIME-CONTINUOUS SYSTEMS

UPOs of a given lengthp of a mapf are nothing but fixed
points of thep times iterated mapf(p). The SD-transformed
02621
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systems are designed such that a relevant part of the tra
tories converges to these fixed points. In principle, th
ideas apply to time-continuous systems as well. If the len
of the UPOs to be found would be known exactly, one wou
simply apply the SD method to detect them. However,
contrast to time-discrete systems the period is now a cont
ous quantity. Therefore a direct transfer and application
the method is not possible.

Let the original continuous~chaotic! system be given by a
system of ordinary differential equations, i.e., by the flow

ẋ5G~x!. ~10!

Next we introduce a hyperplane in phase space that defin
Poincare´ surface of section~PSS!. The latter can be con
structed by recording successive intersections of the cont
ous trajectories with the hyperplane in the same directi
This yields a Poincare´ map gG(x) belonging to the flow
G(x). UPOs of the time-continuous system correspond
periodic points of the Poincare´ map, i.e., to fixed points of
the correspondingly iterated Poincare´ map. The intersections
of a trajectory of the system with the PSS are easily obtai
by integrating the flow and continuously asking for the sing
condition fulfilled by the hyperplane followed by an iteratio
procedure to specify these points. Applying the SD trans
mations to the Poincare´ map the dynamics takes place in
(N21)-dimensional subspace of theN-dimensional phase
space. Therefore, the minimal set of stabilization transform
tions for dimensionN21 is needed only.

As already pointed out in the previous section, one ma
advantage of the SD method is clearly its global converge
property. This feature is equally present when the metho
applied to detect UPOs in PSS of time-continuous syste
In all examples considered below, the extensions of the
sins of attraction are typically many orders of magnitu
larger than the corresponding linear neighborhoods.
longer orbits, these basins of attraction tend to take o
fractallike and fiberlike appearance. Another advantage
the SD method is the fact that no knowledge about the c
tinuous dynamical system is needed. There exist a numbe
methods to find UPOs of chaotic dynamical systems by
fining certain symbolic sequences for the dynamics of
system or by taking advantage of certain symmetries of
equations of motion. None of these considerations are n
essary when dealing with the SD method. All one needs
numerical routine to reliably integrate the equations of m
tion and a coarse-grained set of starting points.

Starting with a trajectory in the basin of attraction of
certain UPO, the speed of the convergence of the S
transformed system decreases with decreasing distance o
corresponding starting point from the fixed point. In the li
ear neighborhood of the fixed point, the distancedn of the
nth point of the trajectory$xn% to the fixed point decrease
exponentially likedn11 /dn512lL, whereL is the most
unstable eigenvalue of the fixed point in the original syst
and l is the parameter of the SD algorithm~usually l
!1/L). Therefore the propagation speed can slow do
considerably, particularly when a small value ofl is used. In
this case the algorithm may become increasingly ineffici
4-3
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if a high resolution of the position of an UPO with a lon
period is required. The linear neighborhood of the fixed po
is the regime where the well-established Newton method
plies and converges superexponentially. In our investigati
of time-continuous systems we therefore combine the S
method with a Newton method. It turned out to be mo
efficient to interrupt the iteration of the SD-transformed s
tem and make a trial shot with the Newton algorithm wh
the step length of the SD algorithm is below a given val
The Newton procedure then either does not converge at
or it converges to a periodic point within a few~typically not
more than ten! iterations. In the first case, the propagation
the SD algorithm is continued at the point where it has b
stopped. In the second case, one has to check whethe
Newton algorithm has converged to the same fixed poin
the SD algorithm did. The latter is recommended in orde
allow for a classification of the fixed points found. A fixe
point that attracts a trajectory has certain geometrical
tures that are related to the specific transformed system
is propagated~see@25# for details!. This close correlation is
lost when the SD and the Newton algorithm are allowed
converge to different points. Additionally, the assignment
a basin of attraction becomes meaningless if a random
ment like an uncontrolled Newton process is made use o

Let us now provide some comments on the implemen
Newton algorithm~for more details see, e.g.,@5#!. The Jaco-
bian matrixJ along a trajectory obeys the equation of moti

J̇~ t !5
]G~x!

]x
J~ t ! ~11!

with the initial condition

J~ t50!51. ~12!

The trajectoryx(t) and the JacobianJ(t) can be integrated
simultaneously using the same integration routine@consider-
ing the entries ofJ(t) as additional coordinates ofx(t)#.
Now we propagate an initial conditionx on the PSS to a
successive intersectiongG(x), which takes the timeT(x).
Linearizing around the flow yields for a pointx8 in the
neighborhood ofx:

G~x,x8!'gG~x!1J~x82x!, ~13!

whereJ is obtained by integrating Eq.~11! between the two
successive intersections atx and gG(x). G(x,x8) describes
the image ofx8 after the timeT(x). Generally,G(x,x8) is not
on the surface, even thoughx, x8 and gG(x) are. This is
because the times required to propagatex and x8, until the
next intersection with the PSS, are different. To find a fix
point xo5gG(xo) consider Eq.~13! as an equality and se
G(x,x8)5x8. Then the following linearized equation has
be solved forx8:

~12J!~x82x!52@x2gG~x!#. ~14!

To achieve this, two problems have to be addressed. The
one concerns the fact thatJ possesses a unit eigenvect
along the flowG(x). Therefore the matrix12J is singular
02621
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and cannot be inverted. The second problem is the fact
the solutionx8 is in general not in the PSS, as explain
above. Both obstacles can be removed by adding a s
vectorG(x)dT along the flowG(x) to Eq.~14! @see Eq.~16!
below#. This bends the eigenvalue ofJ away from unity. At
the same time, the vector (x82x) can be constrained to th
PSS. For the systems studied, the PSS are hyperplan
phase space, i.e., we have

~x82x!•a50 ~15!

with the normal vectora. Equation~14! now becomes

S 12J G~x!

a 0 D S x82x

dT D 5S 2@x2gG~x!#

0 D . ~16!

Inversion of the matrix on the left-hand side of the equat
above yields the positionx8, resulting fromx within one step
of the Newton algorithm.

As discussed above, we found it most economic to co
bine the numerical algorithms in a way that either the S
method or the Newton procedure is applied. Nonethele
recently a different hybrid approach has been suggested
discrete time systems, i.e., maps@32#. It combines the advan
tages of both methods~SD and Newton! in each stepof the
corresponding hybrid algorithm and is therefore very e
cient for sufficiently low-dimensional systems. However f
each step the stability matrix has to be integrated and to
inverted, which makes this hybrid approach less promis
for higher-dimensional systems. Furthermore, the strong
relation of the geometrical features of the fixed point th
becomes stable and the corresponding SD transforma
that achieves this is, in general, reduced. One cannot be
that the UPO the algorithm converges to is actually stable
the pure SD-transformed system.

There are three important elements of the SD method
applied to time-continuous systems: The choice of the P
the set of starting points, and, finally, the value of the para
eterl that determines the step size of the propagation. Th
elements can be utilized as tools if one is especially in
ested in UPOs with certain features and will therefore
addressed in the following in more detail.

Obviously, only orbits that intersect with the PSS can
detected. The freedom in the choice of the PSS has to
considered as an advantage or more precisely as a sele
tool for the detection of the UPOs. In general the appeara
of the UPOs can, to a crude extent, be controlled by
choice of both the PSS and the requested number of in
sections: Searching for long periods and a small numbe
intersections will yield orbits that are predominantly loca
ized far from the chosen PSS, whereas the quest for r
tively small periods with a large number of intersections
sults in orbits that are localized close to the PSS~see Sec. V!.
The distribution of the periods of the UPOs to be found c
to some extent, be controlled by the parameterl whose im-
portance will be discussed next.

The parameterl @see Eq.~7!# has the meaning of an
elementary time step for the SD-transformed system. On
other hand, it is also related to the stability of the UPOs t
4-4
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DETECTING UNSTABLE PERIODIC ORBITS IN . . . PHYSICAL REVIEW E64 026214
should be detected. Let us explain why. The stability ma
of the transformed continuous systems in Eq.~6! reads

MSk
~x!5Ck~Mg(p)~x!21!, ~17!

whereMg(p)(x) is the stability matrix at the fixed pointx of
the p times iterated Poincare´ mapg(p). Let MSk

(x) have ei-

genvaluesL i . Fixed points in these systems are sta
Re(L i),0. The discretised version of Eq.~17! belonging to
Eq. ~8! possesses the stability matrix

MS̃k
~x!511lCk~Mf (p)~x!21! ~18!

with eigenvalues 11lL i ~the position of the fixed points o
the continuous and the discrete system are the same!. How-
ever, in order to be stable in the discrete system, the eig
values of the stability matrixMS̃k

(x) must have the modulu

u11lL i u,1. For highly iterated mapsg(n), n large, we have
the typical situationL i!21 and it is obvious that there
exists an upper limit forl such that the fixed point is stil
stable in the transformed system@see Eq.~8!#. Therefore the
parameterl determines the set of fixed points that can
found by the discretized algorithm~8!. For example, only
being interested in UPOs that are weakly unstable~e.g., for
utilization in a stability-ordered cycle expansion! a relatively
large value ofl will do a good job. As a side effect th
propagation time decreases~the step size is relatively large!
and the domains of attraction have large extensions.
smaller the value ofl, the larger the set of detected fixe
points will be.

The performance of the SD-method depends also on
set of starting points. One possibility is to sample the se
initial points from a chaotic trajectory. This will be the stra
egy for dissipative systems~see Sec. IV! or attractors in gen-
eral ~for a different approach to the selection of initial poin
see Ref.@32#!. For chaotic ergodic Hamiltonian systems it
natural to choose a uniform distribution of initial points o
the PSS. Due to the global convergence character of the
method the set of starting points plays only a minor r
compared to, e.g., the Newton method.

In the following we present two studies of continuo
time dynamical systems: The three-dimensional dissipa
Lorenz system and the Hamiltonian system consisting of
hydrogen atom in a strong homogeneous magnetic fi
which possesses two relevant degrees of freedom. For
systems, the PSS is two-dimensional. Therefore, a mini
set of only three SD-transformations is sufficient to detect
fixed points of the Poincare´ map, i.e., all UPOs of the origi
nal continuous-time system.

IV. THE LORENZ SYSTEM

The Lorenz model@35# provides a three-dimensiona
model of the atmospheric convection. The correspond
equations of motion are

ẋ5sy2sx, ~19!

ẏ52xz1rx2y, ~20!
02621
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ż5xy2bz. ~21!

In this model, the coordinatesx, y, andz are related to the
circulatory fluid flow velocity, the temperature gradient a
nonlinear deviations of the temperature profile. We cons
ered the following values of the parameters:

s516.0, b54.0, %545.92. ~22!

Although the Lorenz system is originally three dimension
rapid phase space contraction leads to an essentially
dimensional attractor. Taking the gradient of the phase sp
flow, one can see that the exponential contraction rate is
1s1b), i.e.,V(t)5V(0)e2(11s1b)t @36#. The dynamics is
restricted to two nearly flat rotating plates. The centers of
rotating motion are located at the stationary point
@6Ab(%21),6Ab(%21),%21#, and a third stationary
point is at (0,0,0). For use in geophysical studies the stat
ary points of a model system are of prominent importan
Further significant insight can be gained by analyzing
UPOs of this system, which makes it an ideal testing grou
for our approach. All of these orbits are unstable. Many f
tures of the Lorenz system, including UPOs and their bif
cations, are discussed by Sparrow@37#. Several methods
have been suggested so far to detect UPOs in this sys
~see@36# and references therein!. The Newton method works
fine in principle, but requires a good guess of the init
conditions.

We now demonstrate that the SD method discussed in
previous section works extremely well for the detection
the UPOs in the Lorenz system. The PSS is given
$(x,y,zuz5%21%. This ~hyper!plane contains the two non
trivial stationary points. Since each UPO oscillates arou
one and/or both of these stationary points, they have to
tersect with the PSS and yield therefore fixed points of
corresponding Poincare´ map. Propagating the set of initia
points with the various SD-transformed systems, trajecto
often converge to the two stationary points contained in
PSS. This is an undesired effect and we avoided a los
efficiency due to it by stopping the propagation of the traje
tory as soon as it is close to either of the two station
points ~it might happen that this way certain periodic poin
of the Poincare´ map are excluded from detection, but sin
an UPO generically possesses also points at larger dista
from the stationary points, it is extremely unlikely that it
missed because of this procedure!. Since the chaotic attracto
of the Lorenz system is nearly two dimensional the set
intersections with the PSS is almost linear. It is therefore
favorable to sample initial points randomly from the Poi
caré hyperplane~the SD algorithm would work well with
these initial points, too, but the paths of convergence wo
be rather long!. It is instead recommendable to sample poin
from a chaotic trajectory after a sufficient transient time h
passed. It turned out to be efficient to take not a comp
section of the trajectory but short random segments. The
son for this is the intermittent behavior of the trajectories t
results in the same fixed points obtained for many succes
starting points from a trajectory.
4-5
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The l parameter has to be adjusted each time a diffe
number of intersections of the UPOs is required. This can
achieved by choosing the stabilization matrixC151 and ad-
justing l such that all or nearly all initial points converg
~the stabilized system corresponding toC1 is likely to con-
verge from any point in the phase space,l being sufficiently
small!. For the Lorenz system the relation of the length
the UPOs to the number of their intersections with the PS
approximately one dimensional which is illustrated in Fig.
The instability of the orbits generally increases with th
length. Therefore, the value ofl has to be decreased if UPO
with a larger number of intersections should be detec
This relation looks very different for the hydrogen atom in
magnetic field~see next section!.

As explained in the previous section, the numerical e
ciency can be dramatically improved by combining the S
method with a Newton algorithm. The time to switch th
propagation from one method to the other is crucial for
efficiency of the algorithm. We found the following proce
dure to be most effective: The trajectory is propagated w
the SD algorithm, starting from some initial point, until
step sizeug(p)(x)2xu,e is reached~typically e50.1). Then
it is checked whether the above defined step size decre
further while applying the SD algorithm. If not (l is still too
large to provide convergence! the SD algorithm is continued
Elsewise, i.e., if the step size is decreasing constantly
Newton algorithm is switched on. In case it converges it d
so within a few (<10) steps and converges close to the po
where the SD algorithm was terminated. If the converge
pattern differs from the above, the fixed point of the Newt
algorithm is likely to be different from the fixed point th

FIG. 3. The Lorenz system: Distribution of the length of t
periodic orbits versus the number of their intersections with
PSS.
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pure SD algorithm would yield. In the latter case, the fix
point found by the Newton method is discarded, since
correlation of the detected fixed points and the correspond
SD transformations is strongly desired. The propagat
scheme then switches back to the SD algorithm. Provided
parameterl is small enough, it typically takes less than 5
steps of the SD algorithm and less than 10 steps for
Newton algorithm to determine the position of the UPO
within an accuracy ofug(p)(x)2xu<10214.

In Table I the numerical results for the Lorenz system
given. It provides the number of prime UPOs and their me
period, sorted with respect to the number of intersectio
with the PSS. Reference@36# gives the number of prime
orbits for p<12 that coincide with our data in Table I. Th
mean length of the UPOs grows approximately linear w
the number of intersections of the orbit. This reflects t
circular shaped dynamics of the Lorenz system: Trajector
and therefore also UPOs, rotate around the nontrivial stat
ary points with nearly constant frequency. Figure 3 shows
almost linear dependence as well as the small variance o
length of the UPOs with the number of intersections. The l
two rows of Table I give some numerical properties of t
SD algorithm: the size of thel parameter and the number o
initial points needed to detect all UPOs. It is remarkable t
this number roughly coincides with the number of detec
periodic points. However, it has to be kept in mind that n
all initial points converge and this set therefore, has to
slightly larger than the numbersNi given in Table I. The SD
method is capable of locating UPOs with a remarkable la
number of intersections. Figure 4 displays an example of
UPO with 30 intersections~in the same direction! with the
PSS. It clearly exhibits the elements all orbits of the Lore
system are composed of: The rotating motion in the t
planes with a varying number of turnovers between the
Remarkably, all UPOs can be found by propagating only o
of the SD-transformed systems, i.e.,S̃4 with the matrixC4.
Figure 5 shows the set of intersections of the UPOs given
Table I. It demonstrates clearly the nearly two-dimensio
extension of the chaotic attractor. It is possible that the l
dimension of the attractor is related to the fact that only o
SD-transformed systemS̃4 is sufficient to find all UPOs.

V. THE HYDROGEN ATOM IN A STRONG MAGNETIC
FIELD

The hydrogen atom in a strong homogeneous magn
field is also known in the literature as the diamagnetic Kep
problem. With increasing degree of excitation i.e., increas
energy and/or increasing field strength its classical dynam

e

merical

33
1

TABLE I. Lorenz system. Properties of periodic orbits with 2 up to 14 intersections with the PSS, and parameters of the nu
detection: the parameterl and the required number of converged initial pointsNi , sampled from the attractor.

Number of intersections 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of prime orbits 1 2 3 6 9 18 30 56 99 186 335 630 1160
Mean period 0.941 1.394 1.843 2.305 2.756 3.219 3.676 4.136 4.595 5.054 5.514 5.974 6.4
l 0.1 0.1 0.1 0.05 0.01 0.01 0.001 0.001 0.001 0.001 0.0001 0.0001 0.000
Ni 1 3 11 17 144 40 192 687 1094 2523 3773 10498 11472
4-6
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DETECTING UNSTABLE PERIODIC ORBITS IN . . . PHYSICAL REVIEW E64 026214
is well known to become almost completely chaotic. U
stable periodic orbits have been extensively used~see Refs.
@38–41# and references therein! to semiclassically quantize
this system and to obtain detailed information on a variety
properties~level density, scarring of wave functions etc!.
Therefore several methods have already been develope
detect UPOs in this system by searching, e.g., along sym
try lines in configuration space@41#. Some of these method
are based on assigning a certain symbolic code to the i
vidual UPOs and most of them are specially designed for
diamagnetic Kepler problem. As already mentioned ab
the SD approach needs no such prior knowledge and wil
demonstrated to work very well also for this Hamiltonia
system: No discussion of symmetry is needed and no s
bolic code has to be developed. All what is necessary
numerical routine to integrate the equations of motions,
proper definition of the PSS and a chaotic trajectory
sample the initial points from. We emphasize that the d
magnetic Kepler problem is just one although prominent
ample of a physical system that can be analyzed with hel
the SD algorithm.

FIG. 4. The Lorenz system: An example of a long periodic or
with 30 intersections with the PSS.

FIG. 5. The Lorenz system: The location of periodic orbits w
2 up to 14 intersections in the PSS.
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The Hamiltonian of the hydrogen atom in a strong ma
netic field assuming an infinite nuclear mass reads in ato
units

H5
p2

2
2

1

ur u
1

1

2
g l z1

1

8
g2~x21y2!. ~23!

It depends on the relative coordinatesr and momentap of
the electron with respect to the nucleus.l z represents the
component of the angular momentum parallel to the m
netic fieldg. Rescaling the coordinates~e.g., Ref.@38#! ac-
cording to

r̃5g2/3r and p̃5g21/3p ~24!

the dynamics, i.e., the Hamiltonian equations of motion
pend now only on the scaled energye,

e5g22/3E ~25!

and not onE andg separately. The singularity atr̃50 is a
drawback of the above Hamiltonian. It can be removed e
by the introduction of semiparabolic coordinates~e.g., Ref.
@38#!:

n25u r̃ u2 z̃, m25u r̃ u1 z̃, ~26!

where the momenta

pn5
dn

dt
, pm5

dm

dt
~27!

are defined with respect to the scaled timet given by

dt52u r̃ udt5~n21m2!dt. ~28!

The equations of motion generated by the Hamiltonian~23!
for a fixed value of the scaled energy are equivalent to
equations of motion generated by the Hamiltonian

h~m,n,pm ,pn!5
pn

2

2
1

l z
2

2n2
1

pm
2

2
1

l z
2

2m2
2e~n21m2!

1
1

8
n2m2~n21m2![2 ~29!

at the fixed pseudoenergy 2. For negative scaled energie
,0, i.e., compact phase space, the Hamiltonian~29! repre-
sents a sextic oscillator: Two harmonic oscillators with fr
quencyv5A22e, which are coupled by the termn2m2(n2

1m2) due to the diamagnetic interaction. The trajector
generated by the HamiltonianH and h are not related by a
canonical transformation, but there is a one-to-one co
spondence. In the following we confine ourselves to vani
ing angular momentuml z50 and use a scaled energye5
20.1 for which the classical atom is almost completely ch
otic. Although the SD method works also in systems w
considerable fractions of the phase space being integra
we concentrate on the situation of almost fully chaotic ph
space.

t

4-7
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The equations of motion in the semi parabolic coordina
are derived in a straightforward way from the Hamiltoni
~29!:

ṁ5
]h

]pm
5pm , ~30!

ṅ5
]h

]pn
5pn , ~31!

ṗm52
]h

]m
5em2

1

4
mn42

1

2
m3n2, ~32!

ṗn52
]h

]n
5en2

1

4
nm42

1

2
n3m2. ~33!

These equations of motion are integrated using a Tayl
integration scheme@42# ~due to energy conservation the d
namics takes place on a three-dimensional energy shell!. This
algorithm is best suited to integrate Hamiltonian of polyn
mial structure. The temporal derivatives of the phase sp
coordinates are expanded in a Taylor series up to a g
orderN. Hereby we make extensive use of the correspond
recursion relations. The stability matrix can be expanded
integrated the same way~for details see Ref.@42#!. This Tay-
lor integrator is an extremely powerful tool to reliably int
grate the equations of motion~an optimal order to be used i
typically N518).

The PSS is given by the hyperplane

$n,pn ,m50% ~34!

Due to the exchange symmetrym↔n of the Hamiltonian Eq.
~29! and the equations of motion~30!–~33! this choice of the
PSS gives the same numerical values of the position of
UPOs as the choice$m,pm ,n50%. The position of a point in
the PSS is therefore given by the pair of coordinates (n,pn).
Using a bisection method the latter is determined within
accuracy of umu,10215. The intersection of the three
dimensional energy surface with the PSS defines a t
dimensional area in this surface in which the dynamics of
system takes place. Equation~29! with pm

2 >0 shows that the
area in the PSS allowed for the dynamics is given by

pn
222en2<4 ~35!

i.e., in coordinates (A22en,pn) this area is given by a circle
of radius 2. The Hamiltonian Eq.~29! with l z50 and m

50 defines the initial valuepm52A22en22 1
2 pn

2 corre-
sponding to an initial point (n,pn) in the surface of section
It is sufficient to consider just one sign (1 in this case! for
the square root on the right-hand side since there are alw
symmetric pairs of orbits related by reflection at the PSS

The role of the number of intersections of an UPO
different when compared to the Lorenz system. Now we
counter also long UPOs possessing only a few intersect
of the PSS as well as relatively short ones that intersect
PSS quite often. Therefore it is possible to find extrem
long orbits as fixed points of the only a few times iterat
02621
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Poincare´ map. Figure 6 shows the distribution of the leng
of the UPOs. A particular example of such an orbit is illu
trated in Fig. 7. To find UPOs with just one or two interse
tions we took a large number of initial conditions~typically
several thousand! and found several long orbits as the o
shown in Fig. 7. The majority of the orbits, of course, a
significantly shorter and have a simpler appearance. The
crease of the length of their periods with the number of
tersections is nearly linear~see Fig. 6, inset! similar to the
Lorenz system. If the grid of initial points becomes larg
and the parameterl becomes smaller we can detect increa
ingly more and longer UPOs in a given area of the PSS.
used rather large grids of initial points for the detection
UPOs up to four intersections. For more intersection poin
smaller grid of initial points has been applied. As a result
obtain large sets of UPOs possessing a significantly vary
length, as visible in Fig. 6.

Using the SD method, one can control to some extent
topological features of the UPOs to be detected: Looking
UPOs starting with a large grid of initial points and a rath
small value of the parameterl one can detect long UPO
that linger for quite a time at a certain distance above a
below the PSS@Fig. 8~a!#. The numerical effort herefore is

FIG. 6. The hydrogen atom in magnetic field: Distribution of t
length of the periodic orbits versus the number of their intersecti
in the PSS. The inset shows the low-period part of the distribut

FIG. 7. Hydrogen atom in magnetic field: Example of a lo
periodic orbit with just four intersections with the PSS.
4-8
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DETECTING UNSTABLE PERIODIC ORBITS IN . . . PHYSICAL REVIEW E64 026214
minor, since for each step of the SD algorithm the Poinc´
map has to be iterated just a few times. On the other s
looking for fixed points of the higher iterated Poincare´ map,
one might get, even for a relatively largel, UPO’s that have
a crownlike appearance like in Fig. 8~b!. The position of the
PSS and the demanded number of intersections together
the parameterl and the set of starting points~see below! can
therefore be used as a tool to determine, at least in a ro
way, the topology of the UPOs to be found.

Determining the set of initial points is relatively straigh
forward for this system. The dynamics is supposed to
nearly ergodic, therefore a uniform random distribution
initial points in the surface of section is a good choice. T
Hamiltonian Eq.~29! is symmetric with respect to the reflec
tions n→2n and pn→2pn . Therefore, each UPO with
given length appears four times in the total phase space,
the intersections with the PSS are located at coordinate
lated by the above symmetry operations. To avoid the c
vergence to UPOs that are trivially related by symmetry
initial points were distributed in a quarter segment of a cir
with the coordinates (A22en,pn) and the radius 2.

Table II summarizes the result of our investigation.
contrast to the Lorenz system the minimal number of int
sections is 1, corresponding to UPOs of the type given
Fig. 8~a!. The number of UPOs with a given number of i
tersections and their mean length of period do not vary i
regular way as for the Lorenz system. The last row in Ta
II shows the minimal numberNi of initial points that had to
converge in order to find the listed number of UPOs. W
used a set of 4000 initial points to detect UPOs up to f

FIG. 8. Hydrogen atom in magnetic field: Periodic orbit with,!
a small number of intersections, located mainly above and be
the PSS, b! a large number of intersections, located mainly in t
PSS.
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intersections. Since this number turned out to be larger t
the necessary saturationNi , we reduced it to 1000 initial
points for UPOs with more than four intersections. Howev
again one has to keep in mind that not all initial points fina
converge in an UPO. They might diverge or might not rea
the desired accuracy within an appropriate time interval.
contrast to the Lorenz attractor, the propagation of each
the SD-transformed systems within the complete minimal
$S1 ,S3 ,S4% yielded distinct orbits.

Figure 9 finally shows the intersection points of all UPO
given in Table II. To generate this figure the intersecti
points have been mirror imaged by theA22en andpn axes.
The dynamics is supposed to be ergodic, i.e., a chaotic
jectory fills the intersection of the energy surface and
PSS with uniform density. Nevertheless, the pattern of
intersections of the UPOs suggest some reminiscent struc
in phase space. Especially for larger absolute values
A22en a shell-like structure emerges. Given a value
uA22enu, certain values ofupnu seem to be favored by
UPOs. WithuA22enu approaching its maximal value of 2
these favored values continuously decrease to zero.

VI. SUMMARY AND OUTLOOK

We demonstrated that the SD method for chaotic tim
discrete dynamical systems is easy to implement and at
same time a very efficient algorithm for the detection of~un-
stable! periodic orbits of continuous-time differential equ
tions. The basic idea is the reduction of the continuous fl
of the system to a discrete Poincare´ map. The Poincare´ map
is then scanned for periodic points, i.e., fixed points of
iterated map. This way, the transformations that stabilize

w
FIG. 9. Hydrogen atom in magnetic field: Location of period

orbits with one up to nine intersections in the PSS.
ameters

54
5

TABLE II. Hydrogen atom in magnetic field. Properties of periodic orbits with one up to nine intersections with the PSS, and par
of the numerical detection: The parameterl and the required number of converged initial pointsNi , sampled from the attractor.

Number of intersections 1 2 3 4 5 6 7 8 9
Number of prime orbits 29 14 16 13 12 19 19 11 11
Mean period 10.814 15.248 6.055 14.333 9.955 12.320 14.519 17.083 18.5
l 0.005 0.005 0.005 0.005 0.001 0.001 0.001 0.001 0.000
Ni 482 1348 462 48 173 209 650 432 126
4-9
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original chaotic system operate in the hyperplane of the s
tion. This approach to time-continuous systems possesse
the advantageous features of the SD method: A large ex
sion of the basins of attraction~which is of even greate
importance in higher-dimensional time-continuous system!,
a nearly monotonous relation of the discretization param
l with the stability of the detected periodic orbits, and
correlation of the geometrical features of the detected p
odic orbits and the particular form of the corresponding s
bilizing transformation. Moreover, the freedom to choose
PSS can be used to selectively detect periodic orbits poss
ing a certain topological structure. The two systems inve
gated here have a three-dimensional phase space. How
continuation of the method to higher dimensions provides
principal obstacles and will be limited by computational r
sources only. As demonstrated with the example of the
renz system there might be even less than the minimal s
SD transformations necessary to find all periodic orbits. I
cs

ic
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h.
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C
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expected that the convergence is even faster in hig
dimensional systems. Compared to methods that require
starting point to be close to the periodic orbit~like the New-
ton algorithm! the SD algorithm is expected to perform si
nificantly better and offers a variety of possibilities to sele
tively investigate dynamical systems without pri
knowledge on them.
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@15# P. Cvitanović, Phys. Rev. Lett.61, 2729~1988!.
@16# E. Ott, Chaos in Dynamical Systems~Cambridge University

Press, Cambridge, 1993!.
@17# K. T. Hansen, Phys. Rev. E52, 2388~1995!.
@18# S. M. Zoldi and H. S. Greenside, Phys. Rev. E57, R2511

~1998!.
@19# O. Biham and W. Wenzel, Phys. Rev. Lett.63, 819 ~1989!.
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